试题
题目:
(2002·福州)等腰三角形的两边长分别为2和7,则它的周长是( )
A.9
B.11
C.16
D.11或16
答案
C
解:(1)假设等腰三角形的腰是2,则2+2=4,4<7,也就是说两边之和小于第三边,所以假设不成立;
(2)假设等腰三角形的腰是7,则7+7=14,14>7,也就是说两边之和大于第三边;7-7=0,则0<2,即两边之差小于第三边,所以假设成立,所以等腰三角形的周长是7+7+2=16,即等腰三角形的周长是16.
故选C.
考点梳理
考点
分析
点评
专题
等腰三角形的性质;三角形三边关系.
在三角形中,两边之和大于第三边.所以,据此很容易找到等腰三角形的腰与底边.
解答本题的难点是分清等腰三角形的腰的长度与底边的长度,如何来区分呢?根据三角形中的三边关系,即两边之和大于第三边,两边之差小于第三边.
分类讨论.
找相似题
(2013·枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )
在等腰△ABC中,AB=AC.
(1)若M是BC的中点,过M任作一直线交AB,AC(或其延长线)于D,E,求证:2AB<AD+AE.
(2)若P是△ABC内一点,且PB<PC,求证:∠APB>∠APC.
在△ABC中,若AB<
1
2
AC
,求证:∠ACB<
1
2
∠ABC.
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2013·广安)等腰三角形的一条边长为6,另一边长为13,则它的周长为( )