试题
题目:
如图,AB是⊙O的直径,D是AB延长线上一点,C是⊙O上一点,CD交⊙O于E,若AB=2DE,∠AOC=72°,则∠D的度数是
24
24
度.
答案
24
解:连接AC,BC,OE,
∵AB是⊙O的直径,
∴∠ACB=90°,
∵∠AOC=72°,
∴∠CAO=
1
2
(180°-∠AOC)=
1
2
(180°-72°)=54°,
∴∠CBD=∠ACB+∠CAO=90°+54°=144°,
∵AB=2DE,
∴∠EDB=∠EOD=2∠BCD,
设∠D=x,则∠BCD=
x
2
,
∵∠CBD+∠D+∠BCD=180°,
∴x+
x
2
+144°=180°,
解得x=24°,
∴∠D的度数是24度.
故答案为:24.
考点梳理
考点
分析
点评
三角形内角和定理;圆的认识.
利用了三角形内角和等于180°计算即可知.
①几何计算题中,如果依据题设和相关的几何图形的性质列出方程(或方程组)求解的方法叫做方程的思想;
②求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;
③三角形的外角通常情况下是转化为内角来解决.
找相似题
(2007·天水)如图,在Rt△ABC中,∠ACB=90度.点P是半圆弧AC的中点,连接BP交AC于点D,若半圆弧的圆心为O,点D、点E关于圆心O对称.则图中的两个阴影部分的面积S
1
,S
2
之间的关系是( )
(2007·南平)如图,甲顺着大半圆从A地到B地,乙顺着两个小半圆从A地到B地,设甲、乙走过的路程分别为a、b,则( )
(2007·金昌)如图是公园的路线图,⊙O
1
,⊙O
2
,⊙O两两相切,点A,B,O分别是切点,甲乙二人骑自行车,同时从点A出发,以相同的速度,甲按照“圆”形线行驶,乙行驶“8字型”线路行驶.若不考虑其他因素,结果先回到出发点的人是( )
(2006·厦门)在平面直角坐标系内存在⊙A,A(b,0),⊙A交x轴于O(0,0)、B(2b,0),在y轴上存在一动点C(C不与原点O重合),直线l始终过A、C,直线l交⊙A于E、F,在半圆EF上存在一点动点D且D不与E、F重合,则S
△DEA
的最大值为( )
(2003·潍坊)防治“非典“增强了人们的卫生意识,大街上随地吐痰的人少了,人们自觉地将生活垃圾倒入垃圾桶中.图中所示的是我们生活中常用的卷筒卫生纸,你知道每层卫生纸有多厚吗?从卫生纸的包装纸上得到以下资料:“两层300格,每格11.4cm×11cm(长×宽)“.我们用尺子量出整卷卫生纸的内外半径分别为2.3cm和5.8cm,每层
卫生纸的厚度约为(精确到O.001cm,π取3.142)( )