试题
题目:
一等腰三角形底边长为10cm,腰长为13cm,则腰上的高为( )
A.12cm
B.
60
13
cm
C.
120
13
cm
D.
13
5
cm
答案
C
解:底边上的高=
1
3
2
-(
10
2
)
2
=12(cm).
腰上的高=
12×10
13
=
120
13
(cm).
故选C.
考点梳理
考点
分析
点评
近似数和有效数字;勾股定理.
根据等腰三角形的性质得到底边上的高平方底边,则利用勾股定理可计算出底边上的高=12(cm),然后利用三角形面积公式可计算出腰上的高.
本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.也考查了勾股定理和等腰三角形的性质.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
如图,正方形ABCD的边长为8,M在CD上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为( )
如图,矩形纸片ABCD中,AB=18cm,把矩形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F,若AF=13,则AD的长为( )
如图,直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则CE的长为( )
如图,已知∠ACB=∠CBD=90°,BC=a,AC=b,当CD=( )时,△CDB∽△ABC.