试题
题目:
如图,矩形纸片ABCD中,AB=18cm,把矩形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F,若AF=13,则AD的长为( )
A.5cm
B.6cm
C.10cm
D.12cm
答案
D
解:根据折叠前后角相等可知△ADF≌△CEF,
设DA=x,又AF=13,DF=18-13=5,
在直角三角形ADF中,x
2
+5
2
=13
2
,
解之得,x=12cm.
故选D.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题);勾股定理;矩形的性质.
根据折叠前后角相等可证AF=FC,在直角三角形ADF中,运用勾股定理求解.
本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
计算题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
如图,正方形ABCD的边长为8,M在CD上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为( )
如图,直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则CE的长为( )
如图,已知∠ACB=∠CBD=90°,BC=a,AC=b,当CD=( )时,△CDB∽△ABC.
如图,在△ABC中∠ACB=Rt∠,CD⊥AB于点D,已知AD=2,DB=1,则( )