试题
题目:
如图,直线l上有三个正方形a,b,c,若a,c的面积分别为6和9,则b的面积为( )
A.9
B.12
C.15
D.20
答案
C
解:∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°
∴∠ACB=∠DEC.
∴在△ABC与△CDE中,
∠ABC=∠CDE
∠ACB=∠DEC
AC=CE
,
∴△ABC≌△CDE(AAS),
∴BC=DE,
∴如图,根据勾股定理的几何意义,b的面积=a的面积+c的面积
∴b的面积=a的面积+c的面积=6+9=15.
故选C.
考点梳理
考点
分析
点评
勾股定理;全等三角形的判定与性质;正方形的性质.
根据已知及全等三角形的判定可得到△ABC≌△CDE,从而得到b的面积=a的面积+c的面积
本题考查了对勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
如图,正方形ABCD的边长为8,M在CD上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为( )
如图,矩形纸片ABCD中,AB=18cm,把矩形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F,若AF=13,则AD的长为( )
如图,直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则CE的长为( )
如图,已知∠ACB=∠CBD=90°,BC=a,AC=b,当CD=( )时,△CDB∽△ABC.