试题
题目:
在直角坐标系中,点P(2,-3)到原点的距离是( )
A.
5
B.
11
C.
13
D.2
答案
C
解:过P作PE⊥x轴,连接OP,
∵P(2,-3),
∴PE=3,OE=2,
在Rt△OPE中,根据勾股定理得:OP
2
=PE
2
+OE
2
=9+4=13,
∴OP=
13
.
故选C.
考点梳理
考点
分析
点评
勾股定理;坐标与图形性质.
在平面直角坐标系中找出P点,过P作PE垂直于x轴,连接OP,由P的坐标得出PE及OE的长,在直角三角形OPE中,由PE及OE的长,利用勾股定理求出OP的长,即为P到原点的距离.
此题考查了勾股定理,以及坐标与图形的性质,勾股定理为:直角三角形中,两直角边的平方和等于斜边的平方,灵活运用勾股定理是解本题的关键.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
如图,正方形ABCD的边长为8,M在CD上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为( )
如图,矩形纸片ABCD中,AB=18cm,把矩形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F,若AF=13,则AD的长为( )
如图,直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则CE的长为( )
如图,已知∠ACB=∠CBD=90°,BC=a,AC=b,当CD=( )时,△CDB∽△ABC.