试题
题目:
已知a、b、c是三角形的三边长,如果满足
(a-6
)
2
+
b-8
+|c-10|=0
,则三角形的形状是( )
A.底与边不相等的等腰三角形
B.等边三角形
C.钝角三角形
D.直角三角形
答案
D
解:∵(a-6)
2
≥0,
b-8
≥0,|c-10|≥0,
∴a-6=0,b-8=0,c-10=0,
解得:a=6,b=8,c=10,
∵6
2
+8
2
=36+64=100=10
2
,
∴是直角三角形.
故选D.
考点梳理
考点
分析
点评
非负数的性质:算术平方根;非负数的性质:绝对值;非负数的性质:偶次方;三角形.
首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,在根据勾股定理的逆定理判断其形状是直角三角形.
本题主要考查了非负数的性质与勾股定理的逆定理,此类题目在考试中经常出现,是考试的重点.
找相似题
线段BC上有3个点P
1
、P
2
、P
3
,线段BC外有一点A,把A和B、P
1
、P
2
、P
3
、C连接起来,可以得到的三角形个数为( )
若△ABC三个内角的度数分别为m、n、p,且|m-n|+(n-p)
2
=0,则这个三角形为( )
现有若干个三角形,在所有的内角中,有5个直角,3个钝角,25个锐角,则在这些三角形中锐角三角形的个数是( )
三角形是( )
在图中,共有多少个三角形( )