试题

题目:
青果学院如图,△ABC中,AB=AC,∠BAC=56°,∠BAC的平分线与AB的垂直平分线OD交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC度数为
112
112
°.
答案
112

青果学院解:如图,连接OB、OC,
∵∠BAC=56°,AO为∠BAC的平分线,
∴∠BAO=
1
2
∠BAC=
1
2
×56°=28°,
又∵AB=AC,
∴∠ABC=
1
2
(180°-∠BAC)=
1
2
(180°-56°)=62°,
∵DO是AB的垂直平分线,
∴OA=OB,
∴∠ABO=∠BAO=28°,
∴∠OBC=∠ABC-∠ABO=62°-28°=34°,
∵DO是AB的垂直平分线,AO为∠BAC的平分线,
∴点O是△ABC的外心,
∴OB=OC,
∴∠OCB=∠OBC=34°,
∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,
∴OE=CE,
∴∠COE=∠OCB=34°,
在△OCE中,∠OEC=180°-∠COE-∠OCB=180°-34°-34°=112°.
故答案为:112.
考点梳理
翻折变换(折叠问题);线段垂直平分线的性质;等腰三角形的性质.
连接OB、OC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得∠ABO=∠BAO,再求出∠OBC,然后判断出点O是△ABC的外心,根据三角形外心的性质可得OB=OC,再根据等边对等角求出∠OCB=∠OBC,根据翻折的性质可得OE=CE,然后根据等边对等角求出∠COE,再利用三角形的内角和定理列式计算即可得解.
本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.
找相似题