试题

题目:
青果学院如图,在△ABC中,AB=AC,点D在BC上,AD=BD,AC=DC,求△ABC各角的度数.
答案
解:设∠B=x,
∵AB=AC,
∴∠C=∠B=x,
∵AD=BD,
∴∠B=∠DAB=x,
∴∠ADC=∠B+∠DAB=2x,
∵AC=CD,
∴∠ADC=∠CAD=2x,
在△ACD中,∠C=x,∠ADC=∠CAD=2x,
∴x+2x+2x=180°,
解得x=36°.
∴∠B=∠C=36°,
∴∠BAC=108°.
解:设∠B=x,
∵AB=AC,
∴∠C=∠B=x,
∵AD=BD,
∴∠B=∠DAB=x,
∴∠ADC=∠B+∠DAB=2x,
∵AC=CD,
∴∠ADC=∠CAD=2x,
在△ACD中,∠C=x,∠ADC=∠CAD=2x,
∴x+2x+2x=180°,
解得x=36°.
∴∠B=∠C=36°,
∴∠BAC=108°.
考点梳理
等腰三角形的性质.
先设∠B=x,由AB=AC可知,∠C=x,由AD=BD可知∠B=∠DAB=x,由三角形外角的性质可知∠ADC=∠B+∠DAB=2x,根据AC=CD可知∠ADC=∠CAD=2x,再在△ABD中,由三角形内角和定理即可得出关于x的一元一次方程,求出x的值,进一步求出△ABC各角的度数即可.
本题考查的是等腰三角形的性质,解答此类题目时往往要用到三角形内角和定理、三角形外角的性质等隐含条件.
找相似题