试题

题目:
青果学院如图,C、E和B、D、F分别在∠GAH的两边上,且AB=BC=CD=DE=EF,若∠A=18°,则∠GEF的度数是(  )



答案
C
解:∵∠A=18°,AB=BC=CD=DE=EF,∴∠ACB=18°,
根据三角形外角和外角性质得出∠BCD=108°,
∴∠CBD=∠CDB=
1
2
×(180°-108°)=36°,
∵∠ECD=180°-∠BCD-∠ACB=180°-108°-18°=54°,
∴∠ECD=∠CED=54°
∴∠CDE=180°-54°×2=72°,
∵∠EDF=∠EFD=180°-(∠CDB+∠CDE)=72°,
∴∠DEF=180°-(∠EDF+∠EFD)=36°,
∴∠GEF=180°-(∠CED+∠DEF)=90°,
即∠GEF=90°.
故选C.
考点梳理
等腰三角形的性质;三角形内角和定理;三角形的外角性质.
根据三角形内角和定理,三角形外角和内角的关系以及等腰三角形的性质,逐步推出∠GEF的度数.
此类题考生应该注意的是三角形内角和定理的运用.
几何图形问题.
找相似题