试题
题目:
(2013·大兴区二模)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )
A.(2a
2
+5a)cm
2
B.(6a+15)cm
2
C.(6a+9)cm
2
D.(3a+15)cm
2
答案
B
解:矩形的面积是:(a+4)
2
-(a+1)
2
=(a+4+a+1)(a+4-a-1)
=3(2a+5)
=6a+15(cm
2
).
故选B.
考点梳理
考点
分析
点评
平方差公式的几何背景.
大正方形与小正方形的面积的差就是矩形的面积,据此即可求解.
本题考查了平方差公式的几何背景,理解大正方形与小正方形的面积的差就是矩形的面积是关键.
找相似题
如图所示,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再把剩余的部分剪拼成一个矩形,通过计算图形(阴影部分的面积),验证了一个等式是( )
将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是( )
(2009·广东一模)如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是( )
在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )
如图,边长为(a+3)的正方形纸片剪出一个边长为a的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则另一边长是( )