试题
题目:
如图,点D为码头,A,B两个灯塔与码头的距离相等,DA,DB为海岸线.一轮船离开码头,计划沿∠ADB的角平分线航行,在航行途中C点处,测得轮船与灯塔A和灯塔B的距离相等.试问:轮船航行是否偏离指定航线?请说明理由.
答案
解:此时轮船没有偏离航线.
理由:由题意知:DA=DB,AC=BC,
在△ADC和△BDC中,
DA=DB
AC=BC
DC=DC
,
∴△ADC和△BDC(SSS),
∴∠ADC=∠BDC,
即DC为∠ADB的角平分线,
∴此时轮船没有偏离航线.
解:此时轮船没有偏离航线.
理由:由题意知:DA=DB,AC=BC,
在△ADC和△BDC中,
DA=DB
AC=BC
DC=DC
,
∴△ADC和△BDC(SSS),
∴∠ADC=∠BDC,
即DC为∠ADB的角平分线,
∴此时轮船没有偏离航线.
考点梳理
考点
分析
点评
全等三角形的应用.
只要证明轮船与D点的连线平分∠ADB就说明轮船没有偏离航线,也就是证明∠ADC=∠BDC,证角相等,常常通过把角放到两个三角形中,利用题目条件证明这两个三角形全等,从而得出对应角相等.
本题考查了全等三角形的应用,解答本题的关键是:根据条件设计三角形全等,巧妙地借助两个三角形全等,寻找对应角相等.要学会把实际问题转化为数学问题来解决.
找相似题
王老师一块教学用的三角形玻璃不小心打破了,他想再到玻璃店划一块同样大小的三角形玻璃,为了方便他只要带哪一块就可以( )
如图,某同学把一块三角形玻璃板打破成三块,现要到玻璃店去配一块大小、形状完全相同的玻璃,那么他只需要带( )
小明不慎将三角形模具打碎为四块,若他只带其中一块到商店去,就能还配一块与原来一模一样的三角形模具,应带( )块去合适.
(2007·锦州一模)如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕点O自由转动,就做成了一个测量工件,则A′B′的长等于内槽宽AB,则判定△OAB≌△OA′B′的理由是( )
如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带( )去.