试题
题目:
如图所示,施工队在沿AC方向开山修路,为了加快施工进度,要在小山的另一边点E同时施工,从AC上的一点B,取∠ABD=145°,BD=500米,∠D=55°,要使A,C,E成一直线,那么开挖点E离点B的距离如何求得?请你设计出解决方案.
答案
解:方案设计如图,
延长BD到点F,使BD=DF=500米,
过F作FG⊥ED于点G.
因为∠ABD=145°,
所以∠CBD=35°,
在△BED和△FGD中
∠EBD=∠F
BD=DF
∠EDB=∠GDF(对顶角相等)
所以△BED≌△FGD(ASA),
所以BE=FG(全等三角形的对应边相等).
所以要求BE的长度可以测量GF的长度.
解:方案设计如图,
延长BD到点F,使BD=DF=500米,
过F作FG⊥ED于点G.
因为∠ABD=145°,
所以∠CBD=35°,
在△BED和△FGD中
∠EBD=∠F
BD=DF
∠EDB=∠GDF(对顶角相等)
所以△BED≌△FGD(ASA),
所以BE=FG(全等三角形的对应边相等).
所以要求BE的长度可以测量GF的长度.
考点梳理
考点
分析
点评
专题
全等三角形的应用.
本题让我们了解测量两点之间的距离的一种方法,设计只要符合全等三角形全等的条件,具有可操作性,需要测量的线段和角度在空地可实施测量.
本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.本题主要是利用了△BED≌△FGD的判定及性质.
应用题;方案型.
找相似题
王老师一块教学用的三角形玻璃不小心打破了,他想再到玻璃店划一块同样大小的三角形玻璃,为了方便他只要带哪一块就可以( )
如图,某同学把一块三角形玻璃板打破成三块,现要到玻璃店去配一块大小、形状完全相同的玻璃,那么他只需要带( )
小明不慎将三角形模具打碎为四块,若他只带其中一块到商店去,就能还配一块与原来一模一样的三角形模具,应带( )块去合适.
(2007·锦州一模)如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕点O自由转动,就做成了一个测量工件,则A′B′的长等于内槽宽AB,则判定△OAB≌△OA′B′的理由是( )
如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带( )去.