试题
题目:
在梯形ABCD中,AD∥BC,延长CB到点E,使BE=AD,连接DE交AB于点M.若N是CD的中点,且MN=5,BE=2.求BC的长.
答案
解::∵AD∥BC,
∴∠A=∠MBE,∠ADM=∠E,
在△AMD和△BME中,
∠A=∠MBE
AD=BE
∠AMD=∠E
∴△AMD≌△BME(ASA);
∴MD=ME,ND=NC,
∴MN=
1
2
EC,
∴EC=2MN=2×5=10,
∴BC=EC-EB=10-2=8.
∴BC的长是8.
解::∵AD∥BC,
∴∠A=∠MBE,∠ADM=∠E,
在△AMD和△BME中,
∠A=∠MBE
AD=BE
∠AMD=∠E
∴△AMD≌△BME(ASA);
∴MD=ME,ND=NC,
∴MN=
1
2
EC,
∴EC=2MN=2×5=10,
∴BC=EC-EB=10-2=8.
∴BC的长是8.
考点梳理
考点
分析
点评
梯形中位线定理;全等三角形的判定与性质.
找出全等的条件:BE=AD,∠A=∠ABE,∠E=∠ADE,即可证得△AMD≌△BME,然后证得MN是三角形的中位线,根据MN=
1
2
(BE+BC),又BE=2,即可求得.
本题考查了全等三角形的判断及三角形中位线定理的应用,熟记其性质、定理是证明、解答的基础.
找相似题
(2012·达州)如图,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,则下列结论:
①EF∥AD;②S
△ABO
=S
△DCO
;③△OGH是等腰三角形;④BG=DG;⑤EG=HF.
其中正确的个数是( )
(2011·钦州)如图,在梯形ABCD中,AB∥CD,AB=3CD,对角线AC、BD交于点O,中位线EF与AC、BD分别交于M、N两点,则图中阴影部分的面积是梯形ABCD面积的( )
(2010·十堰)如图,已知梯形ABCD的中位线为EF,且△AEF的面积为6cm
2
,则梯形ABCD的面积为( )
(2008·岳阳)如图,∠CDA=∠BAD=90°,AB=2CD,M,N分别为AD,BC的中点,连MN交AC、BD于点E、F,若ME=4,则EF的长度是( )
(2008·泸州)如图,梯形ABCD中,AD∥BC,E、F分别是两腰的中点,且AD=5,BC=7,则EF的长为( )