试题
题目:
如图,在梯形ABCD中,AD∥BC,∠B=30°,∠C=60°,E、M、F、N分别为AB、BC、CD、DA的中点,已知BC=7,MN=3,则EF的长为( )
A.4
B.
4
1
2
C.5
D.6
答案
A
解:
作NG∥AB交BC于G,NH∥CD交BC于H,
∵AD∥BC,
∴ABGN,CDNM是平行四边形,
∴BG=AN,CH=ND,
∵M,N分别是BC,AD的中点,
∴BG=CH,
∴GM=HM,
∵∠B=30°,∠C=60°,
∴∠HGN=30°,∠NHG=60°,
∴∠GNH=90°,
∴MN=
1
2
GH=
1
2
(BC-AD),
∴AD=1,
∴EF=
1
2
(BC+AD)=4.
故选A.
考点梳理
考点
分析
点评
专题
梯形中位线定理;含30度角的直角三角形.
作NE∥AB交BC于G,NF∥CD交BC于H,易得△ENF是直角三角形,即可证明MN=
1
2
GH=
1
2
(BC-AD),根据已知求得AD,根据梯形中位线定理即可求得EF的长.
此题考查梯形中位线定理,综合考查了平行四边形的判定、直角三角形的性质等知识点,辅助线的作法是关键.
计算题.
找相似题
(2012·达州)如图,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,则下列结论:
①EF∥AD;②S
△ABO
=S
△DCO
;③△OGH是等腰三角形;④BG=DG;⑤EG=HF.
其中正确的个数是( )
(2011·钦州)如图,在梯形ABCD中,AB∥CD,AB=3CD,对角线AC、BD交于点O,中位线EF与AC、BD分别交于M、N两点,则图中阴影部分的面积是梯形ABCD面积的( )
(2010·十堰)如图,已知梯形ABCD的中位线为EF,且△AEF的面积为6cm
2
,则梯形ABCD的面积为( )
(2008·岳阳)如图,∠CDA=∠BAD=90°,AB=2CD,M,N分别为AD,BC的中点,连MN交AC、BD于点E、F,若ME=4,则EF的长度是( )
(2008·泸州)如图,梯形ABCD中,AD∥BC,E、F分别是两腰的中点,且AD=5,BC=7,则EF的长为( )