试题
题目:
把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是
m>1
m>1
.
答案
m>1
解:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,
联立两直线解析式得:
y=-x+3+m
y=2x+4
,
解得:
x=
m-1
3
y=
2m+10
3
,
即交点坐标为(
m-1
3
,
2m+10
3
),
∵交点在第一象限,
∴
m-1
3
>0
2m+10
3
>0
,
解得:m>1.
故答案为:m>1.
考点梳理
考点
分析
点评
一次函数图象与几何变换.
直线y=-x+3向上平移m个单位后可得:y=-x+3+m,求出直线y=-x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.
本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第一象限的点的横、纵坐标均大于0.
找相似题
(2011·怀化)在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为( )
(2009·延庆县二模)把直线y=2x向右平移一个单位长度后,其直线解析式为( )
(2007·天河区一模)如图,直线AB与x轴相交于点A(1,0),则直线AB绕点A旋转90°后所得到的直线解析式可能是( )
关于一次函数y=-2x+2有结论:①当x>1时,y<0;②图象经过第一、二、三象限;③图象经过点(-1,4);④图象可以由函数y=-2x的图象向上平移2个单位得到.其中正确的结论有( )
若将直线y=kx(k≠0)的图象向上平移3个单位长度后经过点(2,7),则平移后直线的解析式为( )