试题
题目:
(2013·太原)如图,矩形ABCD在第一象限,AB在x轴正半轴上,AB=3,BC=1,直线y=
1
2
x-1经过点C交x轴于点E,双曲线y=
k
x
经过点D,则k的值为
1
1
.
答案
1
解:根据矩形的性质知点C的纵坐标是y=1,
∵y=
1
2
x-1经过点C,
∴1=
1
2
x-1,
解得,x=4,
即点C的坐标是(4,1).
∵矩形ABCD在第一象限,AB在x轴正半轴上,AB=3,BC=1,
∴D(1,1),
∵双曲线y=
k
x
经过点D,
∴k=xy=1×1=1,即k的值为1.
故答案是:1.
考点梳理
考点
分析
点评
反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征.
解由一次函数图象上点的坐标特征即可求得点C的坐标,则根据矩形的性质易求点D的坐标,所以把点D的坐标代入双曲线解析式即可求得k的值.
本题考查了一次函数图象上点的坐标特征,反比例函数图象上点的坐标特征.解题时,利用了“矩形的对边相等,四个角都是直角的性质.
找相似题
(2013·成都)在平面直角坐标系中,下列函数的图象经过原点的是( )
(2013·长春)如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点在直线y=
3
4
x上一点,则点B与其对应点B′间的距离为( )
(2010·莆田)A(x
1
,y
1
)、B(x
2
,y
2
)是一次函数y=kx+2(k>0)图象上不同的两点,若t=(x
1
-x
2
)(y
1
-y
2
),则( )
(2010·南宁)一个质地均匀的正方体骰子的六个面上分别刻有1到6的点数,将骰子抛掷两次,掷第一次,将朝上一面的点数记为x,掷第二次,将朝上一面的点数记为y,则点(x,y)落在直线y=-x+5上的概率为( )
(2009·台湾)坐标平面上,点P(2,3)在直线L上,其中直线L的方程式为2x+by=7,求b=( )