试题
题目:
由3,4,5三个数字随机生成点的坐标,如果每个点出现的可能性相等,那么从中任意取一点,则这个点在函数y=x+1图象上的概率是( )
A.
2
9
B.
1
9
C.
2
3
D.
1
3
答案
A
解:由3,4,5三个数字随机生成点的坐标共有9种情况:(3,5)、(3,4),(4,3)、(4,5)、(5,3)、(5,4)、(3,3)、(4,4)、(5,5),
其中在函数y=x+1图象上的点有两种:(3,4)、(4,5),
∴这个点在函数y=x+1图象上的概率=
2
9
.
故选A.
考点梳理
考点
分析
点评
一次函数图象上点的坐标特征;概率公式.
根据随机事件概率大小的求法,找准两点:
①符合条件的情况数目;
②全部情况的总数.
二者的比值就是其发生的概率的大小.
此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
m
n
.
找相似题
(2013·成都)在平面直角坐标系中,下列函数的图象经过原点的是( )
(2013·长春)如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点在直线y=
3
4
x上一点,则点B与其对应点B′间的距离为( )
(2010·莆田)A(x
1
,y
1
)、B(x
2
,y
2
)是一次函数y=kx+2(k>0)图象上不同的两点,若t=(x
1
-x
2
)(y
1
-y
2
),则( )
(2010·南宁)一个质地均匀的正方体骰子的六个面上分别刻有1到6的点数,将骰子抛掷两次,掷第一次,将朝上一面的点数记为x,掷第二次,将朝上一面的点数记为y,则点(x,y)落在直线y=-x+5上的概率为( )
(2009·台湾)坐标平面上,点P(2,3)在直线L上,其中直线L的方程式为2x+by=7,求b=( )