试题
题目:
(2013·衢州)一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖).
组员
甲
乙
丙
丁
戊
方差
平均成绩
得分
81
79
■
80
82
■
80
那么被遮盖的两个数据依次是( )
A.80,2
B.80,
2
C.78,2
D.78,
2
答案
C
解:根据题意得:
80×5-(81+79+80+82)=78,
方差=
1
5
[(81-80)
2
+(79-80)
2
+(78-80)
2
+(80-80)
2
+(82-80)
2
]=2.
故选C.
考点梳理
考点
分析
点评
方差;算术平均数.
根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.
本题考查了平均数与方差,掌握平均数和方差的计算公式是解题的关键,一般地设n个数据,x
1
,x
2
,…x
n
的平均数为
.
x
,则方差S
2
=
1
n
[(x
1
-
.
x
)
2
+(x
2
-
.
x
)
2
+…+(x
n
-
.
x
)
2
],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
找相似题
(2013·重庆)某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是( )
(2013·台州)甲,乙,丙,丁四人进行射击测试,每人10次射击成绩的平均数都约为8.8环,方差分别为s
2
甲
=0.63,s
2
乙
=0.51,s
2
丙
=0.48,s
2
丁
=0.42,则四人中成绩最稳定的是( )
(2013·泉州)甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如表:
选手
甲
乙
丙
丁
方差(环
2
)
0.035
0.016
0.022
0.025
则这四个人种成绩发挥最稳定的是( )
(2013·齐齐哈尔)甲、乙、丙三个旅游团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是S
甲
2
=1.4,S
乙
2
=18.8,S
丙
2
=25,导游小方最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选( )
(2013·济宁)下列说法正确的是( )