试题
题目:
如图,梯形ABCD中,AB∥DC,AD=DC=CB,AD、BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F,则图中共有全等三角形( )
A.1对
B.2对
C.3对
D.4对
答案
B
解:∵AB∥DC,AD=DC=CB,
∴梯形ABCD是等腰梯形,
∴∠B=∠DAB=∠EDC,
在Rt△EDC和Rt△FBC中,
∵
∠DEC=∠BFC
CD=CB
∠EDC=∠FBC
,
∴△ECD≌△FBC(ASA)
∵AD=DC,
∴∠DAC=∠DCA,
又∵∠DCA=∠CAB,
∴∠DAC=∠CAB,
∴AC是∠GAB的角平分线,
∴CE=CF,
在Rt△ACE和Rt△ACF中,
∵
CE=CF
AC=AC
∴△ACE≌△ACF(HL).
综上可得有两对全等三角形.
故选B.
考点梳理
考点
分析
点评
全等三角形的判定;梯形.
首先可得梯形ABCD是等腰梯形,从而判断出∠B=∠DAB=∠EDC,从而可得△ECD≌△FBC,然后判断出AC是∠GAB的角平分线,从而可判断△ACE≌△ACF.
本题考查了全等三角形的判定及角平分线的性质,解答本题的关键是熟练等腰梯形的性质,另外要求熟练掌握三角形全等的判定定理.
找相似题
(2011·宿迁)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是( )
(2011·上海)下列命题中,真命题是( )
(2011·百色)如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是( )
(2010·凉山州)如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有( )
(2009·武汉)在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论:
①△ACD≌△ACE;②△CDE为等边三角形;③
EH
BE
=2;④
S
△EBC
S
△EHC
=
AH
CH
.
其中结论正确的是( )