试题

题目:
青果学院如图,已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,请补充完整过程,说明△ABC≌△DEF的理由.
∵AB∥DE
∴∠
A
A
=∠
EDF
EDF

∵BC∥EF
∴∠
F
F
=∠
BCA
BCA
  ( 同 理 )
∵AD=CF   (已知)
∴AD+CD=CF+CD
AC
AC
=
DF
DF

在△ABC和△DEF中
青果学院
∴△ABC≌△DEF
(ASA)
(ASA)

答案
A

EDF

F

BCA

AC

DF

(ASA)

证明:∵AB∥DE,
∴∠A=∠EDF(两直线平行,同位角相等),
∵BC∥EF,
∴∠F=∠BCA(同 理),
∵AD=CF(已 知),
∴AD+CD=CF+CD,
即 AC=DF,
在△ABC和△DEF中,
∠A=∠EDF
AC=DF
∠F=∠BCA

∴△ABC≌△DEF(ASA ).
考点梳理
全等三角形的判定.
首先根据平行线的性质可得∠A=∠EDF,∠F=∠BCA,再由条件AD=CF可得AC=DF,然后在证明△ABC≌△DEF.
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
推理填空题.
找相似题