试题
题目:
如图所示,∠1=∠2,BC=EF,欲证△ABC≌△DEF,则还须补充的一个条件是( )
A.AB=DE
B.∠ACE=∠DFB
C.BF=EC
D.∠ABC=∠DEF
答案
D
解:A、添加条件AB=DE,满足SSA无法判定两个三角形全等;
B、添加条件∠ACE=∠DFB,无法判定两个三角形全等;
C、添加条件BF=EC,无法判定两个三角形全等;
D、添加条件∠ABC=∠DEF后,符合ASA,能证明三角形全等.
故选D.
考点梳理
考点
分析
点评
全等三角形的判定.
三角形全等条件中必须是三个元素,并且一定有一组对应边相等.做题时要首先确定已知条件∠1=∠2,BC=EF的位置,结合判定方法,对选项逐个验证.
本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.
找相似题
(2011·宿迁)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是( )
(2011·上海)下列命题中,真命题是( )
(2011·百色)如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是( )
(2010·凉山州)如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有( )
(2009·武汉)在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论:
①△ACD≌△ACE;②△CDE为等边三角形;③
EH
BE
=2;④
S
△EBC
S
△EHC
=
AH
CH
.
其中结论正确的是( )