试题
题目:
如图,点A、B、C、D在同一直线上,AB=CD,DE∥AF,若要使△ACF≌△DBE,则还需补充一个条件,并证明.
答案
解:添加AF=DE、∠E=∠F、BE∥CF、∠ACF=∠DBE后可分别根据SAS、AAS、ASA、ASA能判定△ACF≌△DBE.
添加∠E=∠F为例证明.
证明:∵AB=CD,DE∥AF
∴AC=DB,∠A=∠D
∵∠E=∠F
∴△ACF≌△DBE(AAS).
解:添加AF=DE、∠E=∠F、BE∥CF、∠ACF=∠DBE后可分别根据SAS、AAS、ASA、ASA能判定△ACF≌△DBE.
添加∠E=∠F为例证明.
证明:∵AB=CD,DE∥AF
∴AC=DB,∠A=∠D
∵∠E=∠F
∴△ACF≌△DBE(AAS).
考点梳理
考点
分析
点评
专题
全等三角形的判定;平行线的性质.
本题要判定△ACF≌△DBE,由已知DE∥AF可得∠A=∠D,又有AC=BD,具备了一组角、一组边对应相等,然后根据全等三角形的判定定理,有针对性的添加条件.
本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.
开放型.
找相似题
(2011·宿迁)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是( )
(2011·上海)下列命题中,真命题是( )
(2011·百色)如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是( )
(2010·凉山州)如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有( )
(2009·武汉)在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论:
①△ACD≌△ACE;②△CDE为等边三角形;③
EH
BE
=2;④
S
△EBC
S
△EHC
=
AH
CH
.
其中结论正确的是( )