试题
题目:
(2010·江西模拟)如图所示,AC=BD,AB=CD,图中全等的三角形的对数是( )
A.2
B.3
C.4
D.5
答案
B
解:∵AC=BD,AB=CD,BC=BC,
∴△ABC≌△DCB,
∴∠BAC=∠CDB.
同理得△ABD≌△DCA.
又因为AB=CD,∠AOB=∠COD,
∴△ABO≌△DCO.
故选B.
考点梳理
考点
分析
点评
全等三角形的判定.
利用SSS,SAS,AAS判定三角形全等,在做题时要注意从已知开始,由易到难,循序渐进.
本题考查了全等三角形的判定方法;在找全等三角形是有规律的:从已知条件开始寻找,从由易到难,逐个验证,做到不重不漏.
找相似题
(2011·宿迁)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是( )
(2011·上海)下列命题中,真命题是( )
(2011·百色)如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是( )
(2010·凉山州)如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有( )
(2009·武汉)在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论:
①△ACD≌△ACE;②△CDE为等边三角形;③
EH
BE
=2;④
S
△EBC
S
△EHC
=
AH
CH
.
其中结论正确的是( )