试题
题目:
如图,AD、BE是锐角△ABC的高,相交于点O,若BO=AC,BC=7,CD=2,则AO的长为( )
A.2
B.3
C.4
D.5
答案
B
解:∵AD、BE是锐角△ABC的高
∴∠DBO=∠DAC
∵BO=AC,∠BDO=∠ADC=90°
∴△BDO≌△ADC
∴BD=AD,DO=CD
∵BD=BC-CD=5
∴AD=5
∴AO=AD-OD=AD-CD=3
故选B.
考点梳理
考点
分析
点评
专题
全等三角形的判定.
由AD、BE是锐角△ABC的高,可得∠DBA=∠DAC,又BO=AC,∠BDO=∠ADC=90°,故△BDO≌△ADC,可得BD=AD,DO=CD,再由边的关系即可求出AO的长.
本题考查了全等三角形的判定和性质;结合已知条件发现并利用△BDO≌△ADC是正确解答本题的关键.
计算题.
找相似题
(2011·宿迁)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是( )
(2011·上海)下列命题中,真命题是( )
(2011·百色)如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是( )
(2010·凉山州)如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有( )
(2009·武汉)在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论:
①△ACD≌△ACE;②△CDE为等边三角形;③
EH
BE
=2;④
S
△EBC
S
△EHC
=
AH
CH
.
其中结论正确的是( )