试题
题目:
(2011·六盘水)如图,已知:△ABC是⊙O的内接三角形,D是OA延长线上的一点,连接DC,且∠B=∠D=30°.
(1)判断直线CD与⊙O的位置关系,并说明理由.
(2)若AC=6,求图中弓形(即阴影部分)的面积.
答案
解:(1)直线CD是⊙O的切线
理由如下:
如图,连接OC
∵∠AOC、∠ABC分别是AC所对的圆心角、圆周角
∴∠AOC=2∠ABC=2×30°=60°
∴∠D+∠AOC=30°+60°=90°
∴∠DCO=90°
∴OC⊥CD,
∴CD是⊙O的切线
(2)过O作OE⊥AC,点E为垂足
∵OA=OC,∠AOC=60°
∴△AOC是等边三角形
∴OA=OC=AC=6,∠OAC=60°
在Rt△AOE中
OE=OA·sin∠OAC=6·sin60°=3
3
∴S
△AOC
=
1
2
×6×3
3
=9
3
∵S
扇形AOC
=
60π·
6
2
360
=6π
∴S
阴
=S
扇形AOC
-S
△AOC
=6π-9
3
解:(1)直线CD是⊙O的切线
理由如下:
如图,连接OC
∵∠AOC、∠ABC分别是AC所对的圆心角、圆周角
∴∠AOC=2∠ABC=2×30°=60°
∴∠D+∠AOC=30°+60°=90°
∴∠DCO=90°
∴OC⊥CD,
∴CD是⊙O的切线
(2)过O作OE⊥AC,点E为垂足
∵OA=OC,∠AOC=60°
∴△AOC是等边三角形
∴OA=OC=AC=6,∠OAC=60°
在Rt△AOE中
OE=OA·sin∠OAC=6·sin60°=3
3
∴S
△AOC
=
1
2
×6×3
3
=9
3
∵S
扇形AOC
=
60π·
6
2
360
=6π
∴S
阴
=S
扇形AOC
-S
△AOC
=6π-9
3
考点梳理
考点
分析
点评
切线的判定与性质;扇形面积的计算;解直角三角形.
(1)连接OC.欲证明DE是⊙O的切线,只需证明DC⊥OC即可;
(2)利用弓形的面积等于扇形的面积减去三角形的面积计算阴影部分的面积即可.
本题考查了切线的判定与性质、解直角三角形;证明某一线段是圆的切线时,一般情况下是连接切点与圆心,通过证明该半径垂直于这一线段来判定切线.
找相似题
(2010·武汉模拟)如图正方形ABCD中,以D为圆心,DC为半径作弧与以BC为直径的⊙O交于点P,⊙O交AC于E,CP交AB于M,延长AP交⊙O于N,下列结论:①AE=EC;②PC=PN;③EP⊥PN;④ON∥AB,其中正确的是( )
(2008·闸北区二模)下列说法中,正确的是( )
已知OA平分∠BOC,P是OA上一点,以P为圆心的⊙P与OC相切,则⊙P与OB的位置关系为( )
如图,点P为△ABC的内心,延长AP交△ABC的外接圆⊙O于D,过D作DE∥BC,交AC的延长线于E点.①则直线DE与⊙O的位置关系是
相切
相切
;②若AB=4,AD=6,CE=3,则DE=
3
3
3
3
.
如图,以△ABC的直角边AB为直径的半圆O与斜边AC交于点D,E是BC边的中点.若AD、AB的长是方程x
2
-6x+8=0的两个根,则图中阴影部分的面积为
4
3
-
4
3
π
4
3
-
4
3
π
.