试题
题目:
如图,正方形ABCD,AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP为最短.求:最短距离EP+BP.
答案
解:由正方形的对角线互相垂直平分,可得无论P在什么位置,都有PD=PB;
故均有EP+BP=PE+PD成立;
连接DE与AC,所得的交点,即为EP+BP的最小值时的位置,
此时EP+BP=DE=
4
2
+
3
2
=5.
解:由正方形的对角线互相垂直平分,可得无论P在什么位置,都有PD=PB;
故均有EP+BP=PE+PD成立;
连接DE与AC,所得的交点,即为EP+BP的最小值时的位置,
此时EP+BP=DE=
4
2
+
3
2
=5.
考点梳理
考点
分析
点评
平面展开-最短路径问题.
根据正方形沿对角线的对称性,可得无论P在什么位置,都有PD=PB;故均有EP+BP=PE+PD成立;所以原题可以转化为求PE+PD的最小值问题,分析易得连接DE与AC,求得交点就是要求的点的位置;进而可得EP+BP=DE=
4
2
+
3
2
=5,可得答案.
主要考查了正方形中的最小值问题.解决此类问题关键是利用图形的轴对称性把所求的两条线段和转化为一条线段的长度,通常是以动点所在的直线作为对称轴作所求线段中一条线段的对称图形来转化关系.
找相似题
(2009·恩施州)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )
(2006·孝感)已知如图,圆锥的底面圆的半径为r(r>0),母线长OA为3r,C为母线OB的中点在圆锥的侧面上,一只蚂蚁从点A爬行到点C的最短线路长为( )
(2005·山西)如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是( )
(2005·贵阳)如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是( )
(2004·淄博)如图是一块长,宽,高分别是6cm,4cm和3cm的长方体木块一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是( )