试题
题目:
如图,圆锥的主视图是等边三角形,圆锥的底面半径为2cm,假若点B有一蚂蚁只能沿圆锥的表面爬行,它要想吃到母线AC的中点P处的食物,那么它爬行的最短路程是
2
5
2
5
cm.
答案
2
5
解:∵圆锥的底面周长是4π,则4π=
nπ×4
180
,
∴n=180°即圆锥侧面展开图的圆心角是180°,
∴在圆锥侧面展开图中AP=2,AB=4,∠BAP=90°,
∴在圆锥侧面展开图中BP=
20
=2
5
,
∴这只蚂蚁爬行的最短距离是
2
5
cm.
故答案是:2
5
.
考点梳理
考点
分析
点评
专题
圆锥的计算;平面展开-最短路径问题.
根据圆锥的主视图是等边三角形可知,展开图是半径是4的半圆.点B是半圆的一个端点,而点P是平分半圆的半径的中点,根据勾股定理就可求出两点B和P在展开图中的距离,就是这只蚂蚁爬行的最短距离.
本题主要考查了圆锥的侧面展开图的计算,正确判断蚂蚁爬行的路线,把曲面的问题转化为平面的问题是解题的关键.
计算题.
找相似题
(2009·恩施州)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )
(2006·孝感)已知如图,圆锥的底面圆的半径为r(r>0),母线长OA为3r,C为母线OB的中点在圆锥的侧面上,一只蚂蚁从点A爬行到点C的最短线路长为( )
(2005·山西)如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是( )
(2005·贵阳)如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是( )
(2004·淄博)如图是一块长,宽,高分别是6cm,4cm和3cm的长方体木块一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是( )