试题
题目:
如图是一个三级台阶,它的每一级的长、宽、高分别为55寸、10寸和6寸,A和B是这个台阶的两个相对端点,A点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长度是( )
A.71寸
B.73寸
C.100寸
D.103寸
答案
B
解:展开后由题意得:∠C=90°,AC=3×10+3×6=48(寸),
BC=55寸,
由勾股定理得:AB=
AC
2
+
BC
2
=
48
2
+
55
2
=73(寸),
故选B.
考点梳理
考点
分析
点评
专题
平面展开-最短路径问题;勾股定理.
展开后得到直角三角形ACB,根据题意求出AC、BC,根据勾股定理求出AB即可.
本题主要考查对勾股定理,平面展开-最短路径问题等知识点的理解和掌握,能理解题意知道是求出直角三角形ABC的斜边AB的长是解此题的关键.
计算题.
找相似题
(2009·恩施州)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )
(2006·孝感)已知如图,圆锥的底面圆的半径为r(r>0),母线长OA为3r,C为母线OB的中点在圆锥的侧面上,一只蚂蚁从点A爬行到点C的最短线路长为( )
(2005·山西)如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是( )
(2005·贵阳)如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是( )
(2004·淄博)如图是一块长,宽,高分别是6cm,4cm和3cm的长方体木块一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是( )