试题
题目:
如图所示,一个圆柱高为8cm,底面圆的半径为5cm,则从圆柱左下角A点出发.沿圆柱体表面到右上角B点的最短路程为( )
A.
25
π
2
+8
cm
B.
64+25
π
2
cm
C.
8+5
π
2
cm
D.以上都不对
答案
B
解:沿过A的圆柱的高AD剪开,展开得出平面,如图
连接AB,则AB的长就是从圆柱左下角A点出发.沿圆柱体表面到右上角B点的最短路程,
由题意知:∠BCA=90°,AC=
1
2
×2×5cm×π=5πcm,BC=8cm,
由勾股定理得:AB=
AC
2
+BC
2
=
64+2
5π
2
(cm).
故选B.
考点梳理
考点
分析
点评
平面展开-最短路径问题.
沿过A的圆柱的高AD剪开,展开得出平面,连接AB,根据勾股定理求出AB的长即可.
本题考查了平面展开-最短路线问题,解此题的关键是知道求出哪一条线段的长,题目比较好,但是一道比较容易出错的题目.
找相似题
(2009·恩施州)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )
(2006·孝感)已知如图,圆锥的底面圆的半径为r(r>0),母线长OA为3r,C为母线OB的中点在圆锥的侧面上,一只蚂蚁从点A爬行到点C的最短线路长为( )
(2005·山西)如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是( )
(2005·贵阳)如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是( )
(2004·淄博)如图是一块长,宽,高分别是6cm,4cm和3cm的长方体木块一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是( )