试题
题目:
如图所示是一个三级台阶,它的每一级的长、宽和高分别为200cm、30cm、20cm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短的路程是( )cm.
A.150cm
B.200cm
C.300cm
D.250cm
答案
D
解:如图所示,
∵三级台阶平面展开图为长方形,长为200cm,宽为(20+30)×3cm,
∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.
设蚂蚁沿台阶面爬行到B点最短路程为xcmm,
由勾股定理得:x
2
=200
2
+[(20+30)×3]
2
=250
2
,
解得:x=250cm.
故选D.
考点梳理
考点
分析
点评
平面展开-最短路径问题.
先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答
本题考查了平面展开-最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.
找相似题
(2009·恩施州)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )
(2006·孝感)已知如图,圆锥的底面圆的半径为r(r>0),母线长OA为3r,C为母线OB的中点在圆锥的侧面上,一只蚂蚁从点A爬行到点C的最短线路长为( )
(2005·山西)如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是( )
(2005·贵阳)如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是( )
(2004·淄博)如图是一块长,宽,高分别是6cm,4cm和3cm的长方体木块一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是( )