试题
题目:
有一长、宽、高分别是5cm,4cm,3cm的长方体木块,一只蚂蚁要从长方体的一个顶点A处沿长方体的表面爬到长方体上和A相对的顶点B处,则需要爬行的最短路径长为( )
A.5
2
cm
B.
74
cm
C.4
5
cm
D.3
10
cm
答案
B
解:因为平面展开图不唯一,
故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.
(1)展开前面、右面,由勾股定理得AB
2
=(5+4)
2
+3
2
=90;
(2)展开前面、上面,由勾股定理得AB
2
=(3+4)
2
+5
2
=74;
(3)展开左面、上面,由勾股定理得AB
2
=(3+5)
2
+4
2
=80;
所以最短路径长为
74
cm.
故选B.
考点梳理
考点
分析
点评
平面展开-最短路径问题.
把此长方体的一面展开,在平面内,两点之间线段最短.利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于长方体的高,另一条直角边长等于长方体的长宽之和,利用勾股定理可求得.
本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.
找相似题
(2009·恩施州)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )
(2006·孝感)已知如图,圆锥的底面圆的半径为r(r>0),母线长OA为3r,C为母线OB的中点在圆锥的侧面上,一只蚂蚁从点A爬行到点C的最短线路长为( )
(2005·山西)如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是( )
(2005·贵阳)如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是( )
(2004·淄博)如图是一块长,宽,高分别是6cm,4cm和3cm的长方体木块一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是( )