试题
题目:
如图1的四边形可以用剪刀均匀分成4块完全相同的直角三角形,然后按图2的形状拼成一个边长为(m+n)的正方形(中间空白部分是一个小正方形).
(1)用含m,n的代数式表示图1的面积:
2mn
2mn
;
(2)请用两种方法求图2中间空白部分的面积S.
方法一:
方法二:
答案
2mn
解:(1)S=4(
1
2
mn)=2mn.
(2)方法一:S=(m+n)
2
-2mn=m
2
+n
2
,
方法二:小正方形的边长为:
m
2
+
n
2
,
∴S=m
2
+n
2
.
考点梳理
考点
分析
点评
专题
完全平方公式的几何背景.
(1)四个三角形的面积相加即可得出答案.
(2)①分别求出正方形的边长,②利用大正方形的面积减去四个三角形的面积.
本题考查了完全平方公式的实际应用,完全平方公式与正方形的面积公式和长方形的面积公式经常联系在一起,要学会观察.
几何图形问题.
找相似题
(20六3·枣庄)图(六)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成q块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )
(2010·乌鲁木齐)有若干张面积分别为纸片,阳阳从中抽取了1张面积为a
2
的正方形纸片,4张面积为ab的长方形纸片,若他想拼成一个大正方形,则还需要抽取面积为b
2
的正方形纸片( )
如图是一个正方形,分成四部分,其面积分别是a
2
,ab,b
2
,则原正方形的边长是( )
如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是( )
教材中用图形的面积对二项的完全平方公式作了说明,我们也可用如图对三项的完全平方公式(a+b+c)
2
=a
2
+b
2
+c
2
+2ab+2bc+2ca作说明,那么其中用来表示b
2
的是( )