试题
题目:
(2005·天津)如图,已知五边形ABCDE中,AB∥ED,∠A=∠B=90°,则可以将该五边形ABCDE分成面积相等的两部分的直线有
无数
无数
条.
答案
无数
解:将该五边形ABCDE分成面积相等的两部分的直线有无数条.
考点梳理
考点
分析
点评
专题
多边形.
过点C作与AB平行的直线将该五边形分割为一个矩形和一个梯形,经过梯形中位线的中点及矩形对角线的交点的直线可将该五边形的面积均分;设该直线与边DE、AB的交点分别为P、Q,线段PQ的中点为O,则经过点O且与边DE、AB相交的任意一条直线均可将该五边形的面积均分.
应把多边形问题转换为特殊的四边形来进行解决.
压轴题.
找相似题
(2010·牡丹江)如图,利用四边形的不稳定性改变矩形ABCD的形状得到·A
1
BCD
1
,若·A
1
BCD
1
的面积是矩形ABCD面积一半,则∠A
1
BC=( )
(2005·广州)如图,多边形的相邻两边均互相垂直,则这个多边形的周长为( )
(2013·奉贤区二模)对角线相等的四边形是( )
(2012·上城区二模)设A,B表示两个集合,我们规定“A∩B”表示A与B的公共部分,并称之为A与B的交集.例如:若A={正数},B={整数},则A∩B={正整数}.如果A={矩形},B={菱形},则所对应的集合A∩B是( )
下列图形中具有稳定性的是( )