试题
题目:
如图,圆O为△ABC内切圆,∠B=40°,∠C=60°,则∠DEF=
50°
50°
.
答案
50°
解:∵圆O为△ABC内切圆,BD,BE是切线,
连接OD、OE、OB,则OD⊥BD,OE⊥BE;
∴OD=OE,OB=OB;
∴△BDO≌△BEO,
∴BD=BE;
又∵∠B=40°,
∴∠DEB=∠EDB=
1
2
(180°-40°)=70°,
∵∠C=60°,CE,CF是圆的切线,
∴同理可得,∠FEC=∠EFC=
1
2
(180°-60°)=60°,
∴∠DEF=180°-∠DEB-∠FEC=180°-70°-60°=50°.
考点梳理
考点
分析
点评
三角形的内切圆与内心.
由题意,可证得BE=BD,CE=CF;又∠B=40°,∠C=60°;利用等边对等角,可求得∠DEB和∠FEC的度数;再利用平角为180°,问题即可求出.
本题综合考查利用圆与三角形的关系来求角的大小,关键是充分利用已知条件:有切线就有垂直关系.
找相似题
(2012·玉林)如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧
DE
(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为( )
(2011·西藏)如图.点O是△ABC的内心,若∠ACB=70°,则∠A0B=( )
(2009·乐山)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=( )
(2007·娄底)已知△ABC的内切圆⊙O如图,若∠DEF=54°,则∠BAC等于( )
(2006·钦州)如图为△ABC的内切圆,点D,E分别为边AB,AC上的点,且DE为⊙I的切线,若△ABC的周长为21,BC边的长为6,则△ADE的周长为( )