试题
题目:
已知Rt△ABC中,∠C=90°,AC=5cm,BC=12cm,则△ABC的内切圆半径为
2
2
cm.
答案
2
解:连接OD、OE,
∵⊙O是△ACB的内切圆,
∴BD=BF,AE=AF,CD=CE,∠ODC=∠C=∠OEC=90°,
∵OD=OE,
∴四边形DCEO是正方形,
∴OD=DC=OE=CE,
∵在Rt△BCA中,由勾股定理得:AB=
5
2
+1
2
2
=13(cm),
∴BF+AF=BD+AE=12-OD+5-OE=13,
∴OD=OE=2(cm),
故答案为:2.
考点梳理
考点
分析
点评
三角形的内切圆与内心.
根据勾股定理求出AB,画出图形,根据切线长定理求出BF=BD,AF=AE,求出四边形DCEO是正方形,得出OD=OE=DC=CE,得出方程,求出即可.
本题考查了勾股定理,正方形性质和判定,切线长定理,三角形的内切圆与内心的应用,关键是能根据题意求出关于内切圆半径的方程.
找相似题
(2012·玉林)如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧
DE
(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为( )
(2011·西藏)如图.点O是△ABC的内心,若∠ACB=70°,则∠A0B=( )
(2009·乐山)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=( )
(2007·娄底)已知△ABC的内切圆⊙O如图,若∠DEF=54°,则∠BAC等于( )
(2006·钦州)如图为△ABC的内切圆,点D,E分别为边AB,AC上的点,且DE为⊙I的切线,若△ABC的周长为21,BC边的长为6,则△ADE的周长为( )