试题
题目:
在⊙O中,弦AB=24,弦CD=10,圆心到AB的距离为5,则圆心到CD的距离为
12
12
.
答案
12
解:过O分别作AB,CD的垂线,垂足分别为E,F,连OA,OC,如图,
∴AE=BE,CF=DF,
又∵AB=24,CD=10,
∴AE=12,CF=5,
而OE=5,
在Rt△AOE中,OA=
12
2
+
5
2
=13;
在Rt△OCF中,OF=
13
2
-
5
2
=12;
所以圆心到CD的距离为12.
故答案为12.
考点梳理
考点
分析
点评
专题
垂径定理;勾股定理.
过O分别作AB,CD的垂线,垂足分别为E,F,连OA,OC,根据垂径定理得到AE=BE,CF=DF,而AB=24,CD=10,并且OE=5,先在Rt△AOE中,利用勾股定理求出半径OA,再在Rt△OCF中,利用勾股定理求出OF即可.
本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理.
计算题.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·南通)如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是
AB
的中点,CD与AB的交点为E,则
CE
DE
等于( )
(2013·乐山)如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,-7)的直线l与⊙B相交于C,D两点.则弦CD长的所有可能的整数值有( )
(2013·河池)如图,⊙O的弦AB垂直半径OC于点D,∠CBA=30°,OC=3
3
cm,则弦AB的长为( )
(2013·河北)如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2
3
.则S
阴影
=( )