试题
题目:
(2009·黔东南州)如图,⊙O的半径为5,P为圆内一点,P点到圆心O的距离为4,则过P点的弦长的最小值是
6
6
.
答案
6
解:连接OP并延长与圆相交于C.过点P作AB⊥CQ,AB即为最短弦.
因为AO=5,OP=4,
根据勾股定理AP=
5
2
-
4
2
=3,
则根据垂径定理,
AB=3×2=6.
考点梳理
考点
分析
点评
垂径定理;勾股定理.
设过P点最小的弦长为AB,根据题意可得OP⊥AB,根据勾股定理可得AP=3,则AB=6.
此题的关键是分析出过P点的弦就是垂直于OP的弦.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·南通)如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是
AB
的中点,CD与AB的交点为E,则
CE
DE
等于( )
(2013·乐山)如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,-7)的直线l与⊙B相交于C,D两点.则弦CD长的所有可能的整数值有( )
(2013·河池)如图,⊙O的弦AB垂直半径OC于点D,∠CBA=30°,OC=3
3
cm,则弦AB的长为( )
(2013·河北)如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2
3
.则S
阴影
=( )