试题

题目:
青果学院(2011·青岛)如图,已知AB是⊙O的弦,半径OA=6cm,∠AOB=120°,则AB=
6
3
6
3
cm.
答案
6
3

青果学院解:过O作OC⊥AB于C,
∵OA=OB,
∴∠A=∠B,
∵∠AOB=120°,
∴∠A=∠B=
1
2
(180°-∠AOB)=30°,
∴OC=
1
2
OA=3(cm),
由勾股定理得:AC=
OA2-OC2
=3
3
(cm),
∵OC⊥AB,OC过圆心O,
∴AC=BC,
∴AB=2AC=6
3
(cm),
故答案为:6
3
cm.
考点梳理
垂径定理;三角形内角和定理;等腰三角形的性质;含30度角的直角三角形;勾股定理.
过O作OC⊥AB于C,根据等腰三角形的性质和三角形的内角和定理求出∠A,根据含30度得直角三角形性质求出OC,根据勾股定理求出AC,根据垂径定理求出即可.
本题主要考查对三角形的内角和定理,勾股定理,等腰三角形的性质,垂径定理,含30度角的直角三角形等知识点的理解和掌握,能求出OC、AC的长是解此题的关键.
计算题.
找相似题