试题
题目:
(2005·河源)已知:如图,AB是⊙O的一条弦,点C为
AB
的中点,CD是⊙O的直径,过C点的直线l交AB所在直线于点E,交⊙O于点F.
(1)判定图中∠CEB与∠FDC的数量关系,并写出结论;
(2)将直线l绕C点旋转(与CD不重合),在旋转过程中,E点,F点的位置也随之变化,请你在下面两个备用图中分别画出在不同位置时,使(1)的结论仍然成立的图形,标上相应字母,选其中一个图形给予证明.
答案
(1)解:∠CEB=∠FDC;
理由:∵CD是⊙O的直径,点C为
AB
的中点,
∴CD⊥AB,
∴∠CEB+∠ECD=90°,
∵CD是⊙O的直径,
∴∠CFD=90°.
∴∠FDC+∠ECD=90°.
∴∠CEB=∠FDC.
(2)证明:如图②
∵CD是⊙O的直径,点C为
AB
的中点,
∴CD⊥AB,
∴∠CEB+∠ECD=90°,
∵CD是⊙O的直径,
∴∠CFD=90°.
∴∠FDC+∠ECD=90°.
∴∠CEB=∠FDC.
(1)解:∠CEB=∠FDC;
理由:∵CD是⊙O的直径,点C为
AB
的中点,
∴CD⊥AB,
∴∠CEB+∠ECD=90°,
∵CD是⊙O的直径,
∴∠CFD=90°.
∴∠FDC+∠ECD=90°.
∴∠CEB=∠FDC.
(2)证明:如图②
∵CD是⊙O的直径,点C为
AB
的中点,
∴CD⊥AB,
∴∠CEB+∠ECD=90°,
∵CD是⊙O的直径,
∴∠CFD=90°.
∴∠FDC+∠ECD=90°.
∴∠CEB=∠FDC.
考点梳理
考点
分析
点评
专题
垂径定理;圆周角定理.
根据垂径定理得到CD⊥AB,∠CFD=90°,然后通过等量代换求证出∠CEB=∠FDC.
本题考查垂径定理,这是需要熟练掌握的内容.
压轴题;探究型.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·南通)如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是
AB
的中点,CD与AB的交点为E,则
CE
DE
等于( )
(2013·乐山)如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,-7)的直线l与⊙B相交于C,D两点.则弦CD长的所有可能的整数值有( )
(2013·河池)如图,⊙O的弦AB垂直半径OC于点D,∠CBA=30°,OC=3
3
cm,则弦AB的长为( )
(2013·河北)如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2
3
.则S
阴影
=( )