试题
题目:
(2006·海淀区)如图,已知⊙O的直径AB垂直于弦CD于E,连接AD、BD、OC、OD,且OD=5.
(1)若sin∠BAD=
3
5
,求CD的长;
(2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留π).
答案
解:(1)∵AB是⊙O的直径,OD=5,
∴∠ADB=90°,AB=10,
在Rt△ABD中,sin∠BAD=
BD
AB
,sin∠BAD=
3
5
,
∴
BD
10
=
3
5
,BD=6,
∴AD=
A
B
2
-B
D
2
=
10
2
-
6
2
=8,
∵∠ADB=90°,AB⊥CD,
∴DE·AB=AD·BD,CE=DE,
∴DE×10=8×6,
∴DE=
24
5
∴CD=2DE=
48
5
;
(2)∵AB是⊙O的直径,AB⊥CD,
∴
CB
=
BD
,
AC
=
AD
,
∴∠BAD=∠CDB,∠AOC=∠AOD,
∵AO=DO,
∴∠BAD=∠ADO,
∴∠CDB=∠ADO,
设∠ADO=4x,则∠CDB=4x.
由∠ADO:∠EDO=4:1,则∠EDO=x.
∵∠ADO+∠EDB+∠EDO=90°,
∴4x+4x+x=90°,
解得:x=10°,
∴∠AOD=180°-(∠OAD+∠ADO)=100°,
∴∠AOC=∠AOD=100°,
∴S
扇形OAC
=
100
360
×π×
5
2
=
125
18
π
.
解:(1)∵AB是⊙O的直径,OD=5,
∴∠ADB=90°,AB=10,
在Rt△ABD中,sin∠BAD=
BD
AB
,sin∠BAD=
3
5
,
∴
BD
10
=
3
5
,BD=6,
∴AD=
A
B
2
-B
D
2
=
10
2
-
6
2
=8,
∵∠ADB=90°,AB⊥CD,
∴DE·AB=AD·BD,CE=DE,
∴DE×10=8×6,
∴DE=
24
5
∴CD=2DE=
48
5
;
(2)∵AB是⊙O的直径,AB⊥CD,
∴
CB
=
BD
,
AC
=
AD
,
∴∠BAD=∠CDB,∠AOC=∠AOD,
∵AO=DO,
∴∠BAD=∠ADO,
∴∠CDB=∠ADO,
设∠ADO=4x,则∠CDB=4x.
由∠ADO:∠EDO=4:1,则∠EDO=x.
∵∠ADO+∠EDB+∠EDO=90°,
∴4x+4x+x=90°,
解得:x=10°,
∴∠AOD=180°-(∠OAD+∠ADO)=100°,
∴∠AOC=∠AOD=100°,
∴S
扇形OAC
=
100
360
×π×
5
2
=
125
18
π
.
考点梳理
考点
分析
点评
专题
扇形面积的计算;垂径定理;解直角三角形.
(1)首先根据锐角三角函数求得直角三角形ABC的两条直角边,再根据面积计算其斜边上的高,进一步根据垂径定理计算弦长;
(2)根据直角三角形的两个锐角互余结合已知条件求得扇形所对的圆心角,进一步求其面积.
本题为圆的综合题,综合考查了解直角三角形、三角函数、阴影部分面积等相关知识.
几何综合题;压轴题.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·南通)如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是
AB
的中点,CD与AB的交点为E,则
CE
DE
等于( )
(2013·乐山)如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,-7)的直线l与⊙B相交于C,D两点.则弦CD长的所有可能的整数值有( )
(2013·河池)如图,⊙O的弦AB垂直半径OC于点D,∠CBA=30°,OC=3
3
cm,则弦AB的长为( )
(2013·河北)如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2
3
.则S
阴影
=( )