试题
题目:
(2013·贵港)如图,AB是⊙O的弦,OH⊥AB于点H,点P是优弧上一点,若AB=2
3
,OH=1,则∠APB的度数是
60°
60°
.
答案
60°
解:连接OA,OB,
∵OH⊥AB,AB=2
3
,
∴AH=
1
2
AB=
3
,
∵OH=1,
∴tan∠AOH=
AH
OH
=
3
1
=
3
.
∴∠AOH=60°,
∴∠AOB=2∠AOH=120°,
∴∠APB=
1
2
∠AOB=
1
2
×120°=60°.
故答案为:60°.
考点梳理
考点
分析
点评
专题
垂径定理;圆周角定理;特殊角的三角函数值.
连接OA,OB,先根据锐角三角函数的定义求出∠AOH的度数,故可得出∠AOB的度数,再根据圆周角定理即可得出结论.
本题考查的是垂径定理及圆周角定理,根据题意作出辅助线,构造出圆心角是解答此题的关键.
探究型.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·南通)如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是
AB
的中点,CD与AB的交点为E,则
CE
DE
等于( )
(2013·乐山)如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,-7)的直线l与⊙B相交于C,D两点.则弦CD长的所有可能的整数值有( )
(2013·河池)如图,⊙O的弦AB垂直半径OC于点D,∠CBA=30°,OC=3
3
cm,则弦AB的长为( )
(2013·河北)如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2
3
.则S
阴影
=( )