试题
题目:
正三角形的高、外接圆半径、边心距之比为( )
A.3:2:1
B.4:3:2
C.4:2:1
D.6:4:3
答案
A
解:如图,△ABC是等边三角形,AD是高.点O是其外接圆的圆心,
由等边三角形的三线合一得点O在AD上,并且点O还是它的内切圆的圆心.
∵AD⊥BC,∠1=∠4=30°,
∴BO=2OD,而OA=OB,
∴AD=3OD,
∴AD:OA:OD=3:2:1,
故选:A.
考点梳理
考点
分析
点评
正多边形和圆.
先作出图形,根据等边三角形的性质确定它的内切圆和外接圆的圆心;通过特殊角进行计算,用内切圆半径来表示外接圆半径及此正三角形高线,最后写出比值.
此题主要考查了多边形与外接圆,熟练掌握等边三角形的性质,特别是它的内切圆和外接圆是同心圆,并且圆心是它的高的三等分点,是解题的关键.
找相似题
(2013·绵阳)如图,要拧开一个边长为a=6mm的正六边形螺帽,扳手张开的开口b至少为( )
(2012·台湾)如图,正六边形ABCDEF的边长为1,连接AC、BE、DF,求图中灰色四边形的周长为何?( )
(2011·茂名)如图,正方形ABCD内接于⊙O,⊙O的直径为
2
分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是( )
(2011·安徽)从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M,“这个四边形是等腰梯形”.下列推断正确的是( )
(2010·长沙)如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是( )