试题

题目:
青果学院如图,已知△ADE∽△ABC,相似比为1:3,则AF:AG=(  )



答案
A
解:∵△ADE∽△ABC,且相似比为1:3,
又∵AF是△ADE的高,AG是△ABC的高,
∴AF:AG=1:3.
故选A.
考点梳理
相似三角形的性质.
本题可根据相似三角形的性质求解:相似三角形的对应高的比等于相似比.由于△ADE∽△ABC,且AF是△ADE的高,AG是△ABC的高,因此AF、AG的比就等于相似比.
本题主要考查了相似三角形的性质:相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比.
找相似题