试题
题目:
如图,平行四边形ABCD中,AB=9,AD=6,点E,F分别在AD,AB上,若DE=3,△BCF∽△DCE,
则BF=( )
A.1
B.2
C.4
D.5
答案
B
解:∵△BCF∽△DCE,
∴
BC
DC
=
BF
DE
,
∵AB=9=DC,AD=6=BC,DE=3,把它们代入比例式中,
∴BF=2.
故选B.
考点梳理
考点
分析
点评
相似三角形的性质;平行四边形的性质.
根据相似三角形的性质可得边的比相等,将线段的长代入比例式即可求得.
本题主要利用平行四边形中的对边相等,相似三角形的对应边成比例.
找相似题
(2013·宁德)如图,△ABC∽△AED,∠ADE=80°,∠A=60°,则∠C等于( )
(2011·徐州)平面直角坐标中,已知点O(0,0),A(0,2),B(1,0),点P是反比例函数y=-
1
x
图象上的一个动点,过点P作PQ⊥x轴,垂足为Q.若以点O、P、Q为顶点的三角形与△OAB相似,则相应的点P共有( )
(2011·潼南县)若△ABC∽△DEF,它们的面积比为4:1,则△ABC与△DEF的相似比为( )
(2010·烟台)如图,△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是( )
(2010·铜仁地区)如图,小明作出了边长为1的第1个正△A
1
B
1
C
1
,算出了正△A
1
B
1
C
1
的面积.然后分别取△A
1
B
1
C
1
三边的中点A
2
、B
2
、C
2
,作出了第2个正△A
2
B
2
C
2
,算出了正△A
2
B
2
C
2
的面积.用同样的方法,作出了第3个正△A
3
B
3
C
3
,算出了正△A
3
B
3
C
3
的面积…,由此可得,第10个正△A
10
B
10
C
10
的面积是( )