试题
题目:
在直角坐标系中,已知O(0,0),A(2,0),B(0,4),C(0,3),D为x轴上一点.若以D、O、C为顶点的三角形与△AOB相似,这样的D点有( )
A.3个
B.4个
C.5个
D.6个
答案
B
解:如图:
若△OCD∽△OBA,
则需
OC
OB
=
OD
OA
,
∴
3
4
=
OD
2
,
∴OD=
3
2
,
∴D与D′的坐标分别为(
3
2
,0),(-
3
2
,0),
若△OCD∽△OAB,
则需
OC
OA
=
OD
OB
,
即
3
2
=
OD
4
,
∴OD=6,
∴D″与D′″的坐标分别为(6,0),(-6,0).
∴若以D、O、C为顶点的三角形与△AOB相似,这样的D点有4个.
故选B.
考点梳理
考点
分析
点评
相似三角形的性质;坐标与图形性质.
由相似三角形对应边成比例且夹角相等的三角形相似,分别从若△OCD∽△OBA与若△OCD∽△OAB去分析即可求得答案.
此题考查了相似三角形的判定与性质.注意分类讨论思想与数形结合思想的应用是解此题的关键.
找相似题
(2013·宁德)如图,△ABC∽△AED,∠ADE=80°,∠A=60°,则∠C等于( )
(2011·徐州)平面直角坐标中,已知点O(0,0),A(0,2),B(1,0),点P是反比例函数y=-
1
x
图象上的一个动点,过点P作PQ⊥x轴,垂足为Q.若以点O、P、Q为顶点的三角形与△OAB相似,则相应的点P共有( )
(2011·潼南县)若△ABC∽△DEF,它们的面积比为4:1,则△ABC与△DEF的相似比为( )
(2010·烟台)如图,△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是( )
(2010·铜仁地区)如图,小明作出了边长为1的第1个正△A
1
B
1
C
1
,算出了正△A
1
B
1
C
1
的面积.然后分别取△A
1
B
1
C
1
三边的中点A
2
、B
2
、C
2
,作出了第2个正△A
2
B
2
C
2
,算出了正△A
2
B
2
C
2
的面积.用同样的方法,作出了第3个正△A
3
B
3
C
3
,算出了正△A
3
B
3
C
3
的面积…,由此可得,第10个正△A
10
B
10
C
10
的面积是( )