试题
题目:
如图,已知A、B、C、D四点位置在坐标中如图所示,E是图中两虚线交点,若△ABC与△ADE相似,则E点坐标为( )
A.(4,6)
B.(-6,-4)
C.(4,-3)
D.(-4,3)
答案
C
解:∵点A、B、C、D的坐标分别为(-5,3)、(1,3)、(1,-1)、(4,3),
∴AB=6,AD=9,BC=4;
又∵△ABC∽△ADE,
∴
AB
AD
=
BC
DE
,
∴BC∥DE,DE=6,
故设点E的坐标为(4,y),
∴3-y=6,
解得,y=-3;
∴点E的坐标为(4,-3).
故选C.
考点梳理
考点
分析
点评
相似三角形的性质;坐标与图形性质.
根据两相似三角形的对应边成比例求得DE的长度,然后由两点间的距离公式可以求得点E的坐标.
本题考查了相似三角形的性质、坐标与图形的性质.解答该题的关键是根据相似三角形的对应边成比例求得线段DE的长度.
找相似题
(2013·宁德)如图,△ABC∽△AED,∠ADE=80°,∠A=60°,则∠C等于( )
(2011·徐州)平面直角坐标中,已知点O(0,0),A(0,2),B(1,0),点P是反比例函数y=-
1
x
图象上的一个动点,过点P作PQ⊥x轴,垂足为Q.若以点O、P、Q为顶点的三角形与△OAB相似,则相应的点P共有( )
(2011·潼南县)若△ABC∽△DEF,它们的面积比为4:1,则△ABC与△DEF的相似比为( )
(2010·烟台)如图,△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是( )
(2010·铜仁地区)如图,小明作出了边长为1的第1个正△A
1
B
1
C
1
,算出了正△A
1
B
1
C
1
的面积.然后分别取△A
1
B
1
C
1
三边的中点A
2
、B
2
、C
2
,作出了第2个正△A
2
B
2
C
2
,算出了正△A
2
B
2
C
2
的面积.用同样的方法,作出了第3个正△A
3
B
3
C
3
,算出了正△A
3
B
3
C
3
的面积…,由此可得,第10个正△A
10
B
10
C
10
的面积是( )