试题
题目:
如图,△ABC∽△A′B′C′,AD、BE分别是△ABC的高和中线,A′D′、B′E′分别是△A′B′C′的高和中线,且AD=4,A′D′=3,BE=6,则B′E′的长为( )
A.
3
2
B.
5
2
C.
7
2
D.
9
2
答案
D
解:∵△ABC∽△A′B′C′,AD、BE分别是△ABC的高和中线,A′D′、B′E′分别是△A′B′C′的高和中线,
∴
AD
A′D′
=
BE
B′E′
∵AD=4,A′D′=3,BE=6,
∴
4
3
=
6
B′E′
解得:B′E′=
9
2
.
故选D.
考点梳理
考点
分析
点评
相似三角形的性质.
利用相似三角形对应高的比、对应中线的比都等于相似比求解.
本题考查了相似三角形的性质,相似三角形对应高的比、对应中线的比都等于相似比.
找相似题
(2013·宁德)如图,△ABC∽△AED,∠ADE=80°,∠A=60°,则∠C等于( )
(2011·徐州)平面直角坐标中,已知点O(0,0),A(0,2),B(1,0),点P是反比例函数y=-
1
x
图象上的一个动点,过点P作PQ⊥x轴,垂足为Q.若以点O、P、Q为顶点的三角形与△OAB相似,则相应的点P共有( )
(2011·潼南县)若△ABC∽△DEF,它们的面积比为4:1,则△ABC与△DEF的相似比为( )
(2010·烟台)如图,△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是( )
(2010·铜仁地区)如图,小明作出了边长为1的第1个正△A
1
B
1
C
1
,算出了正△A
1
B
1
C
1
的面积.然后分别取△A
1
B
1
C
1
三边的中点A
2
、B
2
、C
2
,作出了第2个正△A
2
B
2
C
2
,算出了正△A
2
B
2
C
2
的面积.用同样的方法,作出了第3个正△A
3
B
3
C
3
,算出了正△A
3
B
3
C
3
的面积…,由此可得,第10个正△A
10
B
10
C
10
的面积是( )