试题
题目:
如图,△DEF的边长分别为1,
3
,2,正六边形网格是由24个边长为2的正三角形组成,以这些正三角形的顶点为顶点画△ABC,使得△ABC∽△DEF.如果相似比
AB
DE
=k,那么k的不同的值共有( )
A.1个
B.2个
C.3个
D.4个
答案
C
解:∵△DEF的边长分别为1,
3
,2
∴△DEF为直角三角形,∠F=30°,∠D=60°
根据等边三角形的三线合一,可作三边比为1:(
3
+
3
):2的三角形
∴相似比
AB
DE
=k,k可取2,2
3
,4.
故选C.
考点梳理
考点
分析
点评
专题
等边三角形的性质;勾股定理的逆定理;相似三角形的性质.
根据题意可得:在正六边形网格找与△DEF相似的三角形;即找三边的比值为1:
3
:2的直角三角形;分析图形可得:共三种情况,相似比分别为:2,2
3
,4;
本题主要考查了相似三角形的判定.
压轴题.
找相似题
(2013·宁德)如图,△ABC∽△AED,∠ADE=80°,∠A=60°,则∠C等于( )
(2011·徐州)平面直角坐标中,已知点O(0,0),A(0,2),B(1,0),点P是反比例函数y=-
1
x
图象上的一个动点,过点P作PQ⊥x轴,垂足为Q.若以点O、P、Q为顶点的三角形与△OAB相似,则相应的点P共有( )
(2011·潼南县)若△ABC∽△DEF,它们的面积比为4:1,则△ABC与△DEF的相似比为( )
(2010·烟台)如图,△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是( )
(2010·铜仁地区)如图,小明作出了边长为1的第1个正△A
1
B
1
C
1
,算出了正△A
1
B
1
C
1
的面积.然后分别取△A
1
B
1
C
1
三边的中点A
2
、B
2
、C
2
,作出了第2个正△A
2
B
2
C
2
,算出了正△A
2
B
2
C
2
的面积.用同样的方法,作出了第3个正△A
3
B
3
C
3
,算出了正△A
3
B
3
C
3
的面积…,由此可得,第10个正△A
10
B
10
C
10
的面积是( )