试题
题目:
已知一个梯形被一条对角线分成两个相似三角形,如果两腰的比为
1
4
,那么两底的比为( )
A.
1
2
B.
1
4
C.
1
8
D.
1
16
答案
D
解:如图.
∵AD∥BC,
∴∠1=∠2.
∵梯形ABCD被一条对角线分成两个相似三角形,
∴△ABD∽△DCB,
已知两腰为:AB和DC,
∴
AB
DC
=
AD
DB
=
BD
CB
=
1
4
,
∴BD=4AD,CB=4BD=16AD,
∴
AD
BC
=
AD
16AD
=
1
16
.
故选D.
考点梳理
考点
分析
点评
相似三角形的性质;梯形.
已知一个梯形被一条对角线分成两个相似三角形,再根据梯形两底平行的关系,确定相似的两个三角形,再根据相似三角形对应边长成比例,即可求得两底之比.
本题主要考查了梯形的性质和相似三角形的基本性质及对应边长成比例,根据相似比来求解.
找相似题
(2013·宁德)如图,△ABC∽△AED,∠ADE=80°,∠A=60°,则∠C等于( )
(2011·徐州)平面直角坐标中,已知点O(0,0),A(0,2),B(1,0),点P是反比例函数y=-
1
x
图象上的一个动点,过点P作PQ⊥x轴,垂足为Q.若以点O、P、Q为顶点的三角形与△OAB相似,则相应的点P共有( )
(2011·潼南县)若△ABC∽△DEF,它们的面积比为4:1,则△ABC与△DEF的相似比为( )
(2010·烟台)如图,△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是( )
(2010·铜仁地区)如图,小明作出了边长为1的第1个正△A
1
B
1
C
1
,算出了正△A
1
B
1
C
1
的面积.然后分别取△A
1
B
1
C
1
三边的中点A
2
、B
2
、C
2
,作出了第2个正△A
2
B
2
C
2
,算出了正△A
2
B
2
C
2
的面积.用同样的方法,作出了第3个正△A
3
B
3
C
3
,算出了正△A
3
B
3
C
3
的面积…,由此可得,第10个正△A
10
B
10
C
10
的面积是( )